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I. Attitude control problem
statement



Attitude control
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Intuition
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Attitude control: Problem statement

1. By controlling the voltages V1, V2, V3 and V4 at the four motors and
obtaining measurements from the inertial measurement unit (IMU) make
the quadcopter hover, that is φ = 0 (no pitch), θ = 0 (no roll), ψ = 0 or
ψ̇ = 0 (no yaw).

2. Follow the reference signals (φr, θr, ψ̇r) and the throttle reference signal
τr from the RC.
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Attitude control: Workflow
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II. State Space Systems



States, inputs and outputs

I States: Those variables that provide all we would need to know about
our system to fully describe its future behaviour and evolution in time,

I Outputs: Variables, typically transformations of the state variables,
that we can measure

I Inputs: Variables which we have the ability to manipulate so as to
control the system

I Disturbances: Signals which affect the system behaviour and can be
thought of as input variables over which we do not have authority
(e.g., weather conditions).
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State space systems

State space systems are described in continuous time by

ẋ(t) = f(x(t), u(t)),

y(t) = h(x(t), u(t)),

where x ∈ IRnx is the system state vector, u ∈ IRnu is the input vector
and y ∈ IRny is the vector of outputs.

Regularity conditions on f for the system to have unique solutions: check out Carathéodory’s Theorem.
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Discrete-time state space systems

The discrete time version is

xk+1 = f(xk, uk),

yk = h(xk, uk),

where k ∈ N.
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Why state space?

I Can be directly derived from first principles of physics

I Suitable for multiple-input multiple-output systems

I Enable the study of controllability, observability and other interesting
properties

I Time-domain representation: more intuitive
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Equilibrium points

A pair (xe, ue) is called an equilibrium point of the continuous-time
system

ẋ(t) = f(x(t), u(t)),

if
f(xe, ue) = 0.

If u(t) = ue and x(0) = xe, then x(t) = xe for all t > 0.
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Equilibrium points

A pair (xe, ue) is called an equilibrium point of the discrete time system

xk+1 = f(xk, uk)

if
f(xe, ue) = xe.

Then, if uk = ue for all k and x0 = xe, then xk = xe for all k ∈ N.
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Discretisation

Excerpt from Wikipedia:

In mathematics, discretization concerns the process of
transferring continuous functions, models, and equations into
discrete counterparts.
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Discretisation: the Euler method

Recall that

ẋ(t) = lim
h→0

x(t+ h)− x(t)

h
,

so, for small h

ẋ(t) ≈ x(t+ h)− x(t)

h
.

Using this approximation

ẋ(t) = f(x(t), u(t)),

is approximated — with sampling period h — by the discrete system

xk+1 = xk + hf(xk, uk),

where xk is an approximation for x(kh).
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Discretisation: the Euler method
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Discretisation: linear systems

When the continuous-time system has the form

ẋ(t) = Ax(t) +Bu(t),

then we know that its solution is

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ

Assume that u(t) is constant on [kh, (k + 1)h) and equal to u(k) = uk
and define Ad = eAh and Bd =

∫ h
0 e

AτBdτ . Then

xk+1 = Adxk +Bduk,

is an exact discretisation of the original system.

In MATLAB use c2d — read the documentation for help.
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Linearisation

The best linear approximation of a function f : IRn → IRm about a point
x0 is given by

f(x) ≈ f(x0) + Jf(x0)(x− x0)

For functions f : IRn × IRm → IRn this reads

f(x, u) ≈ f(x0, u0) + Jxf |(x0,u0) (x− x0) + Juf |(x0,u0) (u− u0).
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Jacobian matrix

Let x = (x1, x2, . . . , xn) and

f(x) =


f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fn(x1, x2, . . . , xn)



The Jacobian matrix of f is a function Jf : IRn → IRn×n defined as

Jf(x) =


∂f1
∂x1

(x) ∂f1
∂x2

(x) · · · ∂f1
∂xn

(x)

∂f2
∂x1

(x) ∂f2
∂x2

(x) · · · ∂f2
∂xn

(x)
...

...
. . .

...
∂fn
∂x1

(x) ∂fn
∂x2

(x) · · · ∂fn
∂xn

(x)


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Linearisation

Consider the continuous time system

ẋ(t) = f(x(t), u(t)),

choose an equilibrium point (xe, ue) and define

∆x(t) = x(t)− xe,
∆u(t) = u(t)− ue

Then, it is easy to verify that the system linearisation is written as

d
dt∆x(t) = A∆x(t) +B∆u(t),

where A = (Jxf)(xe, ue) and B = (Juf)(xe, ue).
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Simulations

In MATLAB we may use

1. ode23: fast and of decent accuracy

2. ode45: less fast but more reliable

3. Simulink and S-functions

In C++ we may use odeint.
In Python try scipy.integrate.ode.

In this project we provide to you a simulator in MATLAB.
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III. Stabilisation of Linear Systems



Controllability

Linear time-invariant (LTI) discrete-time systems:

xk+1 = Axk +Buk

We say that the system is controllable if for every x1, x2 ∈ IRnx there is a
finite sequence of inputs (u0, u1, . . . , uN ) which can steer the system state
from x1 to x2 (we can move the system to any point x2 starting from any
point x1).
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Controllability

The system is controllable iff

rank
[
B AB A2B · · · Anx−1B

]︸ ︷︷ ︸
C(A,B)

= nx.

This is the most popular criterion, but there exist a lot more. We also often say that the pair (A,B) is controllable.
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Why using rank is a bad idea

Take for example the pair (A,B) with

A =

[
1 ε
ε ε

]
, B =

[
0
1

]
Then, the controllability matrix is[

1 ε
0 ε

]
whose rank is 2 but its singular values are 1 and ε.

In MATLAB use rank(·,tol) or svd instead of rank(·).
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Stability
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Asymptotic Stability
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Stability analysis of linear systems

Consider the linear discrete-time system

xk+1 = Axk.

The origin (xe = 0) is an asymptotically stable equilibrium point for the
above system if and only if all eigenvalues of A are strictly within the unit
circle, that is

|λi| < 1.

In MATLAB one may find the eigenvalues of a matrix using eig. To find the largest eigenvalue use eigs(A,1).

25 / 174



Stabilisation

Suppose the pair (A,B) is controllable and consider the system

xk+1 = Axk +Buk.

Problem: Find a controller uk = κ(xk) so that for the controlled system

xk+1 = Axk +Bκ(xk)

the origin is an asymptotically stable equilibrium point.

Hint: Choose κ(x) = Kx and find K so that A+BK has all its
eigenvalues inside the unit circle.

Such a K always exists because the system is controllable and we may choose K so as to place the eigenvalues of

A + BK at any desired points in the unit circle.

26 / 174



Stabilisation

We may choose K so that A+BK has eigenvalues s1, . . . , snx using
Ackerman’s formula. In MATLAB we may use the function place.

But, where should we place the poles?

What about performance?

The linear quadratic regulator (LQR) gives an answer to these questions...

Read carefully the documentation of place...
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IV. Linear Quadratic Regulator



Motivation

We need to stabilise the system

xk+1 = Axk +Buk,

by a linear controller
uk = Kxk

so that the closed-loop system’s response minimises a certain cost index.
We assume that xk is exactly known at time k.
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Before we proceed...

Consider the optimisation problem

minimise
x∈IRn

f(x)

s.t. gj(x) = 0,

Suppose the problem is convex and feasible. Let x? be an optimiser and
define the Lagrangian function

L (x, λ) = f(x) +
∑

j λjgj(x)

Then there is a vector λ? so that

∇L (x?, λ?) = 0

We call the problem convex if f is convex and the set {x : g(x) = 0} is convex.

29 / 174



Finite horizon LQR

We need to determine a finite seq. of inputs π = (u0, u1, . . . , uN−1) which
solves the optimisation problem

minimise J(π;x) := 1
2x

>
NQfxN + 1

2

N−1∑
k=0

x>kQxk + u>kRuk

subject to

xk+1 = Axk +Buk, for k = 0, . . . , N − 1

x0 = x

N is called the horizon of the problem.
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Finite horizon LQR

Some remarks:

minimise J(π;x) := 1
2x

>
NQfxN + 1

2

N−1∑
k=0

x>kQxk + u>kRuk

xk+1 = Axk +Buk, and x0 = x

I We take Q = Q> < 0, R = R> � 0 and

I the problem is convex quadratic with equality constraints,

I with decision variables u0, u1, . . . , uN−1 and x1, . . . , xN and

I it has a unique minimiser.

The notation Q < 0 means that Q is pos. semidefinite. R � 0 means R is pos. def.
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Finite horizon LQR: solution

The Lagrangian is

L = J +
∑

λ>k+1(Axk +Buk − xk+1),

and by setting the gradient wrt uk (k = 0, . . . , N − 1) equal to 0 we obtain

∇ukL = Ruk +B>λk+1 = 0⇒ uk = −R−1B>λk+1

Similarly wrt xk (k = 1, . . . , N − 1) we obtain

∇xkL = Qxk +A>λk+1 − λk = 0

⇒ λk = Qxk +A>λk+1

Taking the gradient wrt xN we have

∇xNL = QfxN − λN = 0⇒ λN = QfxN
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Finite horizon LQR: solution

To sum up

xk+1 = Axk +Buk

λk = Qxk +A>λk+1

λN = QfxN

uk = −R−1B>λk+1

x0 = x
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Finite horizon LQR: solution

Therefore,

λN = Qf (AxN−1 +BuN−1)

= Qf (AxN−1 −BR−1B>λN )

⇒ λN = (I +QfBR
−1B>)−1QfA · xN−1

and

λN−1 = [A>(I +QfBR
−1B>)−1QfA+Q] · xN−1

= PN−1 · xN−1
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Finite horizon LQR: solution

We may recursively show that

λN = QfxN = PNxN

and

λk = Pkxk,

where Pk satisfies the recursion

Pk = Q+A>(I + Pk+1BR
−1B>)−1Pk+1A.

35 / 174



Finite horizon LQR: solution

The finite-horizon LQR control law has the form

uk = Kkxk,

where

Kk = −R−1B>(I + Pk+1BR
−1B>)−1Pk+1A,

and

Pk = Q+A>(I + Pk+1BR
−1B>)−1Pk+1A,

PN = Qf .
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Infinite horizon LQR

We need to determine a sequence of inputs π = (u0, u1, . . .) which solves
the optimisation problem

minimise J(π;x) := 1
2

∞∑
k=0

x>kQxk + u>kRuk

subject to

xk+1 = Axk +Buk, for k ∈ N
x0 = x

Assume that (A,B) is controllable so that the problem is feasible. Why?
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Infinite horizon LQR

Fact. Assume that (A,B) and (A>,
√
Q
>
) are controllable. Then, there is

a unique symmetric pos. def. matrix P satisfying

P = Q+A>(I + PBR−1B>)−1PA

= Q+A>PA−A>PB(R+B>PB)−1B>PA,

and the optimal sequence of inputs is given by

uk = Kxk,

with K = −(R+B>PB)−1B>PA, and K is an asym. stabilising gain.
Additionally, the optimal cost will be J?(x0) = 1

2x
>
0Px0.
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Infinite horizon LQR

The gain K computed by the infinite horizon LQR deems A+BK has all
its eigenvalues strictly inside the unit circle.

In MATLAB one may compute the LQR solution using lqr or dlqr, but
be wary as they return −K instead of K (they make A−BK stable).
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Choice of Q and R

I One may choose Q and R to be diagonal matrices

I The larger Q is, the more responsive and aggressive the controlled
system becomes,

I The higher R is, the smoother the response will be.
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Choice of Q and R
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V. Reference tracking



Problem Statement

So far we have been concerned with the stabilisation of the system towards
an equilibrium point (xe, ue) — or (0, 0) for the system with state ∆x and
input ∆u.

Typically in practice we need to be able to steer the system output

yk = Cxk +Duk,

to a given reference r, that is yk → r as k →∞, for any externally
provided r.
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Reference tracking v1

Choose uk = Kxk + Frk and choose K to be a stabilising gain for (A,B)

  

We assume that (A,B) is controllable.
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Reference tracking v1

We now have a system with input rk, state xk and output yk described by∗

xk+1 = (A+BK)xk +BFrk

yk = (C +DK)xk +DFrk.

Let (xe, re) be an equilibrium point of the above system. Then

(A+BK − I)xe +BFre = 0

(C +DK)xe +DFre = ye.

and observe what A+BK − I is invertible (why?), so

xe = −(A+BK − I)−1BFre = EFre,

therefore
((C +DK)E +D)Fre = ye.
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Reference tracking v1

We require that the reference-to-output static gain is equal to I, that is

((C +DK)E +D)F = I,

Notice that (C +DK)E +D is not always a square matrix.

In general, we are not always able to find such an F !

One possible solution (expensive):

F = ((C +DK)E +D)+,

Another possible solution:

F ∈ argmin ‖((C +DK)E +D)F − I‖2

X+ is the Moore-Penrose pseudoinverse.

45 / 174



Example

A = [1 1; 0 0.5]; B = [0;1]; C = [1 0.1]; D = 0.1;

nx = length(A); nu = size(B,2); ny = size(C,1);

if rank(ctrb(A,B),1e-6)∼=nx,
error('System not controllable ');

end

Q = eye(nx); R = 2*eye(nu);

K = -dlqr(A,B,Q,R,0);

assert( all(abs(eig(A+B*K)) <= 1-1e-7),...

'K is not stabilising ');

E = -(A+B*K-eye(nx))\B;

X = (C+D*K)*E + D;

assert(rank(X, 1e-6) == ny , 'X not full rank');
F = X\eye(ny); % OR: F = pinv(X);
assert( norm((X*F - eye(ny), Inf) < 1e-12 );
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Example
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Reference tracking v2

Let us consider a slightly different parametrisation for uk

uk = ue +K(xk − xe),

where xe and ue are computed so that[
A− I B
C D

]
︸ ︷︷ ︸

W

[
xe

ue

]
=

[
0
r

]

where W is not necessarily square. Now, find G so that

WG =

[
0nx×ny

Iny

]
Then [

xe

ue

]
= Gr.

This means that (xe, ue) is an equilibrium point of the system dynamics: xe = Axe+Bue and the corresponding

output is r = Cxe + Due.
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Reference tracking v2
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Example

A = [1 1; 0 0.5];

B = [0;1];

C = [1 0.1];

D = 0.1;

nx = length(A); % nx = 2
nu = size(B,2); % nu = 1
ny = size(C,1); % ny = 1

Q = eye(nx); R = 20*eye(nu);

K = -dlqr(A,B,Q,R,0);

W = [A-eye(nx), B;

C, D];

G = W\[zeros(nx, ny); eye(ny)];
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Example

x = [1;0];

X=x;

Y=[];

for k=1:100 ,

if (k<15),

r = 1.2;

elseif (k>=15 && k<40),

r = 0.8;

else

r = -0.3;

end

xue = G*r;

u = xue(nx+1:nx+nu) + K*(x-xue(1:nx));

x = A*x + B*u;

X = [X;x];

Y = [Y; C*x + D*u];

end

plot(Y','linewidth ' ,2);
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Example

0 20 40 60 80 100

k

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y
k

reference

R=20

R=10

52 / 174



Reference tracking with disturbances

Problems. Is the controlled system really offset free? How can we
guarantee that ek = yk − rk indeed converges to 0?

What if a constant disturbance dk acts on the system as follows?

xk+1 = Axk +Buk + dk
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Reference tracking with disturbances
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Here a disturbance as small as d = 0.01 made the system equilibrate away from the set-point.
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Integral action

Solution. integral action! We introduce the error integral dynamics:

zk+1 = zk + rk − yk

and use the control law

uk = ue +Kx(xk − xe) +Kzzk.

In MATLAB one may compute the gains Kx and Kz using lqi.

The MATLAB function lqi returns −Kx and −Kz . Read the documentation. The MATLAB function ss will also

be needed.
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Integral action stability

As an exercise, show that if
[
Kx Kz

]
is a stabilising gain for the pair([

A 0
C I

]
,

[
B
0

])
,

and the reference signal is constant, rk = r, then yk → r for any constant
disturbance dk = d.

The LQI returns Kx and Kz which satisfy this condition and, additionally, minimise an infinite-horizon cost index.
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Integral action

  

Integral action
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Integral action in action
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VI. Linear State Observers



Problem Statement

So far we have assumed that xk is known at time k (measured) and free of
noise. This is usually unrealistic. Instead, we obtain a measurement yk

yk = Cxk +Duk.

We then need a way to produce estimates x̂k of the current state using
information that can be observed: current and past inputs and outputs.
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Observability

Consider the system

xk+1 = Axk +Buk

yk = Cxk +Duk.

We say that it is observable if there is n ∈ N so that for any x0 and any
finite sequence of inputs {uk}nk=0, x0 can be uniquely determined using
{uk}n−1k=0 and {yk}nk=0.
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Observability condition

The pair (C,A) is observable if and only if (A>, C>) is controllable, that is

rank


C
CA
CA2

...
CAnx−1

 = nx

In MATLAB one may use the commands rank and obsv. Use the SVD decomposition of the observability matrix to

tell whether it is near-unobservable (In MATLAB use svd).
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State observers

A linear state observer is a dynamical system

x̂k+1 = Ax̂k + L(ŷk − yk) +Buk

ŷk = Cx̂k +Duk.

Define the state estimation error ek = x̂k − xk. Then

ek+1 = (A+ LC)ek.

The error dynamics is asymptotically stable (ek → 0 as k →∞) provided
that all eigenvalues of A+ LC are inside the unit circle.

Here we assume that (C,A) is observable.
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State observer design

Straightforward solution: by pole placement.

But where should we place the poles?

Rule of thumb: the poles of A+ LC should be about 10 times smaller
than the poles of the controlled system.

One may use MATLAB’s place to construct L.

63 / 174



Separation principle

We may always design the controller and the observer separately and then
combine them. For example, using integral action:

zk+1 = zk + rk − yk,
uk = ue +Kx(x̂k − xe) +Kzzk,

x̂k+1 = Ax̂k + L(Cx̂k +Duk︸ ︷︷ ︸
ŷk

−yk) +Buk,

where the first two equations correspond to the controller which computes
uk based on the state estimate x̂k as the state xk is not directly available.
The last equation is used to update the estimate x̂k+1.
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Separation principle
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Estimation under uncertainty

Consider the system

xk+1 = Axk +Buk +Gwk

yk = Cxk +Duk +Hwk + vk,

where wk and vk are zero-mean random variables with

E[wkw
>
k] = Σw

E[vkv
>
k] = Σv,

E[wkv
>
k] = 0,

with E[wkw
>
j ] = 0 and E[vkv

>
j ] = 0 for k 6= j.
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Minimum energy estimation

We need to produce an estimate x̂k out of observations {yj , uj}j≤k so as
to minimise

Jmee =

k∑
t=−∞

v>tQvt + w>tRwt,

where

I large Q: we trust our measurements

I large R: we trust our system model

I Choose: Q = Σ−1v , R = Σ−1w

This is equivalent to minimising the steady-state covariance of the state
estimation error

P = lim
k

E[(xk − x̂k)(xk − x̂k)>].
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Steady-state Kalman Filter

The best estimator is then known to be

x̂k+1 = Ax̂k + L(Cx̂k +Duk − yk) +Buk,

where L is given by

L = −(APC> +GQH>)(CPC> +R+HQH>)−1,

where P solves an algebraic Ricatti equation. In MATLAB, L and P are
computed by kalman (see also lqg).

68 / 174



Example

System dynamics:

xk+1 =

0.5 −0.9 −0.1
0.9 0.5 0.1
0.1 0 1

xk +

1
0
0

uk + wk

yk =

[
1 0 1
0 1 −0.5

]
xk + vk

The system is controllable and observable. We choose the LQR
parameters Qlqr = 5I,Rlqr = 4, and the Kalman filter parameters
Qkal = 10 · I, Rkal = 0.01 · I.
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Example — estimation error
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Example — response
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Example — poles
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Measurement bias

What will happen if our measurements have a constant bias?

xk+1 = Axk +Buk + wk

yk = Cxk +Duk + vk + dyk,

where vk ∼ N (0,Σv), wk ∼ N (0,Σw) and dyk is constant.

We will see that by applying a standard KF, x̂k − xk does not converge to
a zero-mean distribution.
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Measurement bias — Example

% System data
A = [1 1.2; 0.1 0.5];

B = [0;1];

C = [1 0.1];

D = 0.1;

nx = size(A,1); nu = size(B,2); ny = size(C,1);

% LQR design
Q = eye (2);

R = 80;

K = -dlqr(A, B, Q, R, 0);

dy = 1.0; % measurement bias
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Measurement bias — Example

% Kalman filter design
Qo = diag ([20, 20]); Ro = 100;

ss_kalman = ss(A, [B eye(2)], C, [D 0 0], -1);

[∼, L, P] = kalman(ss_kalman , Qo , Ro , 0);

x = [ -1;10]; % initial values (x_0, z_0)
x_ = [ -1;10]; % initial state estimate

T = 200; % simulation time
X = zeros(2,T); X(:,1) = x; % cache of states
X_ = zeros(2,T); X_(:,1) = x_; % cache of estimates
for k=1:T,

x = A * x + B * K * x_ + randn *0.02;

y = C * x + D * K * x_ + randn *0.05 + dy ;

x_ = (A - L*C)*x_ + (B - L*D) * K * x_ + L * y;

X_(:,k+1) = x_; X(:,k+1) = x;

end
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Measurement bias — State estimation, dy=0
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Measurement bias — State estimation, dy=1
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Measurement bias — State estimation, dy=5
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State estimation & Measurement bias

Some remarks:

I If dy = 0 everything works like clockwork

I A KF fails to reconstruct the system of the state

I A biased output tracks the desired disturbance
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Measurement bias — a remedy

One possible remedy is to perfectly calibrate our sensors. But often this is
not enough, let alone, they often wear out with time and use.

The system dynamics (omitting all noise terms) is written as[
xk+1

dk+1

]
=

[
A 0
0 I

] [
xk
dk

]
+

[
B
0

]
uk

yk =
[
C I

] [xk
dk

]
+Duk

Exercise 1: Show that the above system is not controllable. Exercise 2: Construct a matrix A ∈ IR2×2 and a

C ∈ IR1×2 so that (C,A) is observable, but the above system is unobservable.
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Measurement bias — a remedy

By defining x̃k = (xk, dk)
> we may rewrite the system as

x̃k+1 = Ãx̃k + B̃uk

yk = C̃x̃k +Duk,

and if (C̃, Ã) is observable (see slides 60 and 61), we may design a state
observer to estimate x̃k, so the observer will produce two estimates x̂k and
d̂k and as k →∞, d̂k − dk → 0.
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Measurement bias — a remedy

% Data of the augmented system
A_ = blkdiag(A, 1);

C_ = [C 1];

B_ = [B;0];

% Design augmented state observer
sys_ = ss(A_ , [B_ eye(3)], C_ , [D zeros (1,3)], -1);

[∼, L_] = kalman(sys_ Qo , Ro , 0);

% State estimation
x_ = (A_ - L*C_)*x_ + (B_ - L*D_) * u + L * y;

xest = x_ (1:2);

dest = x_(3);
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Measurement bias — a remedy
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Here we used dy = 3. Indeed the observer produces an estimate d̂k which converges to dy (plus-minus zero-mean

noise).
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Measurement bias — conclusions

Some notes:

I The variable yk − d̂k is an estimate of the system’s unbiased output

I The controller’s goal should be to drive yk − d̂k to r, so
asymptotically Cxk +Duk → r.
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Extensions

There exist more elaborate state estimators such as

I Linear Quadratic Gaussian (LQG): LQR and KF

I Non-steady-state Kalman filter

I The Extended Kalman Filter

I The Unscented Kalman Filter

I Particle filters

and many another.
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Designer’s arsenal

We have the following tools in our toolbox:

I Rejection of measurement bias by augmenting the state space system
with the disturbance

I Integral action to attenuate the effect of constant disturbances acting
on the system state

I Use none, both or either depending on the problem, but choose the
simplest formulation that leads to good closed-loop behaviour. In
other words, verify your assumptions with simple experiments.
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VII. Quaternions and Rotations



Reference frame

  

The orientation of a solid body in space
can only be defined with respect to a
reference frame.

Here we use a body-fixed frame, that
is, roughly speaking, the orientation is
described with what the body itself
defines as upright and forward.
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Euler angles

Euler angles: (α, β, γ)
Reference frame: (x, y, z)
Rotated frame: (X,Y, Z)

Important: the order of the three elementary rotations matters! The standard convention is: yaw, pitch, roll.
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Yaw (heading)
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Pitch (elevation)
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Roll (bank)
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Positive rotation convention

  

Use the right hand rule. Mnemonic trick: In alphabetical order: x→ y → z → x→ . . .. Positive yaw: face left;

Positive pitch: tilt upward as when an aeroplane taking off; Positive roll: roll to the right side.
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Quaternions

A quaternion is a representation of a rotation; it is a 4-dimensional vector

q = (q0, q1, q2, q3).

Often, it is represented as a hyper-complex number

q = q0 + iq1 + jq2 + kq3,

where i2 = j2 = k2 = ijk = −1. We call q0 its scalar part and (q1, q2, q3)
its vector part.

The space of quaternions is denoted by H.
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Quaternion representations of rotations

A rotation/orientation can be described by a quaternion by determining (i)
a direction of rotation u ∈ R3 and (ii) the angle of rotation about u. The
corresponding quaternion is

q = cos α2 + (iux + juy + kuz) sin α
2 .
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Quaternions
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Quaternions
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Rotations using quaternions
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Rotations using quaternions
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Rotations using quaternions
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Rotations using quaternions
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Rotations using quaternions
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Rotations using quaternions
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Rotations using quaternions

1.5
1

-0.5

-0.5

0

0.5

y

0.5

z

0

x

1

00.5

1.5

1 -0.5
1.5

96 / 174



Rotations using quaternions

1.5
1

-0.5

-0.5

0

0.5

y

0.5

z

0

x

1

00.5

1.5

1 -0.5
1.5

96 / 174



Rotations using quaternions
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Rotations using quaternions
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Quaternions: some simple calculus

Let p = (p0, p1, p2, p3), q = (q0, q1, q2, q3) and λ ∈ IR. Then:

I Addition: p+ q = (p0 + q0, p1 + q1, p2 + q2, p3 + q3)

I Multiplication:

X ijk = −1
X ij = k, jk = i, ki = j
X ji = −k, kj = −i, ik = −j
X p · q = (p0 + ip1 + jp2 + kp3) · (q0 + iq1 + jq2 + kq3) = . . .
X But, p · q is not the same as q · p
X Let 1H = (1, 0, 0, 0); then p · 1H = 1H · p = p.

I Division: p/q = p · q−1 (later)
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Quaternions — some definitions

The norm of a quaternion q ∈ H is

‖q‖ =
√
q20 + q21 + q22 + q23

Quaternions with ‖q‖ = 1 are called unit quaternions (H1), are used to
represent rotations in IR3 and have the representation

q = cos α2 + sin α
2 (iux + juy + kuz)

The complex conjugate of q is

q∗ = (q0,−q1,−q2,−q3).

Hereafter, we will only be dealing with unit quaternions. In MATLAB the conjugate of a quaternion is computed by

quatconj. The 2-norm of a quaternion is computed by quatnorm.
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Quaternions — combined rotation

We define the (Hamilton) product of two quaternions p, q ∈ H

p⊗ q ≡ p · q = Q(p) · q =


p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0



q0
q1
q2
q3


The operation ⊗ is not commutative. The product q ⊗ p describes the
combined rotation of p followed by q (in the absolute frame of reference).

Useful properties: (p ⊗ q)∗ = q∗ ⊗ p∗ and (p∗)∗ = p. Therefore, p ⊗ q = (q∗ ⊗ p∗)∗. Source: Fresk &

Nikolakopoulos, 2013. In MATLAB use quatmultiply.
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Quaternions — combined rotation
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Quaternions — combined rotation

v

1.5-0.5

0

-0.5 1

0.5z

1

0

1.5

y

0.5

x

0.5
01

-0.51.5

100 / 174



Quaternions — combined rotation

1.5-0.5

comb0

-0.5 1

0.5z

1

0

1.5

y

0.5

x

0.5
01

-0.51.5

100 / 174



Hamilton product

We defined the Hamilton product p⊗ q = Q(p) · q. We may represent this
product in a dual way as

p⊗ q = Q̄(q)p =


q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0



p0
p1
p2
p3


Interesting observations:

I Q̄(q∗) = Q̄(q)>.

I For p, q ∈ H1, p⊗ q ∈ H1.
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Quaternions — inversion

Let p be a unit quaternion. Then

p⊗ p∗ = p∗ ⊗ p = 1H,

where 1H = (1, 0, 0, 0) is a no-rotation quaternion. In this sense, p∗ is the
inverse of p. In general

p−1 =
p∗

‖p‖
.

The inverse of a quaternion p−1 undoes the rotation p. It is

p⊗ p−1 = p−1 ⊗ p = 1H.
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Rotating objects using quaternions

Let an object be defined by some points Pi ∈ IR3 and let q ∈ H1 be a unit
quaternion describing a rotation. Then, the application of q on Pi rotates
it to a new point P̃i. This rotation is described by[

0

P̃i

]
= p⊗

[
0
Pi

]
⊗ p−1

= p⊗
[

0
Pi

]
⊗ p∗

= Q(p)Q̄(p∗)

[
0
Pi

]
= Q(p)Q̄(p)>

[
0
Pi

]
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Rotations in MATLAB

% Define a box
A = [0 0 0]; B = [1 0 0]; C = [0 1 0]; D = [0 0 1];

E = [0 1 1]; F = [1 0 1]; G = [1 1 0]; H = [1 1 1];

P = [A;B;F;H;G;C;A;D;E;H;F;D;E;C;G;B];

% Define a quaternion
alpha = 0.1;

p = [cos(alpha /2), sin(alpha /2)*[2; 0.2; -0.6]'];
p = quatnormalize(p);

% Rotate the box P
N = size(P,1);

Q = quatmultiply(quatmultiply(p,[zeros(N,1) P]), ...

quatconj(p));

Q = Q(: ,2:4);

% Plot
plot3(Q(:,1),Q(:,2),Q(:,3),'LineWidth ' ,2);

In MATLAB quaternions are represented as row vectors. 104 / 174



Rotations in MATLAB

Another alternative is to use the direction cosines matrix, a matrix
D ∈ IR3×3 so that for P ∈ IR3, P̃ = DP is the rotated point

% Using DCM
Q = P*quat2dcm(p);

Moreover, MATLAB provides the function quatrotate where, however,
one needs to provide p∗ and not p

% Using quatrotate
Q = quatrotate(quatconj(p), P);
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Difference of quaternions — the wrong way

Fact. All quaternions αq, for α 6= 0, represent the same exact rotation!

Let us define
d(p, q) = p− q.

Then
d(p, αp) = (1− α)p,

but p and αp are equivalent rotations.

If d(p, q) is a no-rotation quaternion then p and q are identical.
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Difference of quaternions — the wrong way

Assume p and q are unit quaternions and take p = −q. Then

d(p, q) = 2p.

Although p and q correspond to the same rotation, there is no way to infer
that by d(p, q).
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Difference of quaternions — the right way

A useful difference mapping is a δ : H×H→ H given by

δ(p, q) = p⊗ q∗.

Take a unit quaternion p ∈ H:

δ(p, p) = p⊗ p∗ = (1, 0, 0, 0).
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Euler angles to quaternions

The rotation described by the Euler angles (φ, θ, ψ) is given by the
quaternion

q =


cos φ2 cos θ2 cos ψ2 + sin φ

2 sin θ
2 sin ψ

2

sin φ
2 cos θ2 cos ψ2 − cos φ2 sin θ

2 sin ψ
2

cos φ2 sin θ
2 cos ψ2 + sin φ

2 cos θ2 sin ψ
2

cos φ2 cos θ2 sin ψ
2 − sin φ

2 sin θ
2 cos ψ2



In MATLAB, use the function angle2quat. Sequence of rotations: yaw, pitch, roll. Source: Wikipedia.
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Euler angles to quaternions

A quaterion q = (q0, q1, q2, q3) corresponds to the following Euler angles

φθ
ψ

 =

 arctan 2(q0q1+q2q3)
1−2(q21+q22)

arcsin(2(q0q2 − q3q1))
arctan 2(q0q3+q1q2)

1−2(q22+q23)


In MATLAB, do not use atan — use atan2 instead.

Remember: do not use atan!
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Why quaternions?

I With Euler angles we always need to specify the sequence of rotations

I Gimbal lock — a singularity

I Rotations with simple algebraic operations

I Quaternions: numerically robust rotations.
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VIII. Attitude Dynamics & Control



Reference frames

Source: Xiong and Zheng, 2013.
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Quadcopter dynamics

  

Motor
Dynamics

Quaternion-based
Flight Dynamics
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Motor & propeller dynamics
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Motor & propeller dynamics

  

ESC + Motor
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Motor & propeller dynamics

  

Motor dynamics
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Motor & propeller dynamics

  

Reaction wheel
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Motor & propeller dynamics

  

Thrust
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Parameters of motor & propeller dynamics

Parameters k1 and k2 are given by

kx,y,z1 =
Vmax − Vmin

60
Kv

kx,y,z2 = 1
τm

where

I Vmax is the max. voltage (around 11.1V ),

I Vmin = 10%Vmax,

I Kv is the motor speed constant (in rpm/V ),

I τm is the time constant of the motors (τm = 35ms)
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Parameters of motor & propeller dynamics

Parameters kx3 and ky3 are given by (for j = x, y)

kj3 = d
dn CTρn

2D4
∣∣
nh

NmL√
2Ijj

where

I CT is the thrust coeff. the propellers,

I ρ is the density of the air,

I Nm is the number of motor,

I D is the diameter of each propeller,

I L is the arm length of the quadcopter,

I Iprop is the moment of inertia of each propeller,

I Ixx, Iyy are the m.o.i about the x and y axes and

I nh is the hovering frequency of rotation (rps)

I CTρn
2D4 is the thrust applied by each propeller.

116 / 174



Parameters of motor & propeller dynamics

Parameter kz3 is given by

kz3 = d
dn

CPρn
2D5

2π

∣∣∣∣
nh

Nm

Izz

where

I CP is the power coefficient of the propellers,

I Izz is the m.o.i about the z axis and

I nh is the hovering frequency of rotation (rps)
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Parameters of motor & propeller dynamics

Parameters kx,y4 and kz4 are given by

kx,y4 = 0

kz4 = 2πNm
Iprop + Im

Izz
,

where

I Iprop is the moment of inertia of each propeller

I Im is each motor’s moment of inertia
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Flight dynamics

The attitude dynamics is described by

q̇ = 1
2 · q ⊗

[
0
ω

]
,

ω̇ = I−1cm(τ − ω × (Icmω)),

where Icm is the inertia matrix

Icm =

Ixx Iyy
Izz



Recall that we are using an X-shaped body-fixed frame (see slide 87).
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Signals to motors

The signals v1, . . . , v4 to the four motors are computed in terms of the
torque signals ux, uy, uz and the a common signal c as follows

v1 = c+ ux + uy − uz
v2 = c+ ux − uy + uz

v3 = c− ux + uy + uz

v4 = c− ux − uy − uz

where v1, . . . , v4 are relative voltage signals and will create the torques τx,
τy and τz.
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Parameters

Parameter Symbol Value Units

Number of motors Nm 4 −
Total mass of the quadcopter m 1.85 kg
Arm length L 27 cm
Air density (sea level, 15◦) ρ 1.225 kg/m3

Gravitational acceleration g 9.81 m/s2

Table : General properties of the EAGLE quadcopter and various constants.
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Parameters

Parameter Symbol Value Units

Thrust coefficient∗ CT 0.1 −
Power coefficient∗ CP 0.04 −
Propeller mass mp 20 g
Propeller diameter D 12 in

Table : Parameters of the propellers (12x4.5 Thin Electric).
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Parameters

Parameter Symbol Value Units

Motor speed constant Kv 700 rpm/V
Motor time constant τm 35 ms
Rotor mass mr 42 g
Rotor radius Rr 1.9 cm
Total motor mass mm 102 g

Table : Motor parameters (3508-700KV Turnigy Multistar 14 Pole Brushless
Multi-Rotor Motor With Extra Long Leads).
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Moments of inertia

The moment of inertial about the vertical
axis that runs through the CoM of the
suspended body is

I =
mgd2T 2

n

16π2L
,

where Tn is its natural period of oscillation.

Image source: http://www.schoolphysics.co.uk.
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Closed-loop system

  

Motor
Dynamics

Quaternion-based
Flight Dynamics

Controller
Error

computation
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Details

I Consider only the dynamics of (q1, q2, q3), exclusing q0
I Use the fact that rotation quaternions are unit quaternions

I Write down the (q1, q2, q3), ω-dynamics and linearise the system

I Verify that it is controllable

I Use the scalar part of qe to “regularise” its vector part

I You will find bibliographic references at the end.

Details: Y. Yang, 2012. Regarding the regularisation, see also: Fresk and Nikolakopoulos, 2013.
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Details

Given that rotation quaternions q ∈ H are unitary

‖q‖ = 1,

we have that

q0 =
√

1− q21 − q22 − q23.

This means that the vector part of q suffices to determine q0 (using the
convention that q0 > 0). We may use this fact to eliminate q0 from the
model.

Details: Y. Yang, 2012. Regarding the regularisation, see also: Fresk and Nikolakopoulos, 2013.
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Details

A rotation of −5◦ (about any axis) has the same effect as a rotation of
355◦. In order to avoid going around the long way we need to canonicalise
qr as follows

q̄r =

{
qr, if qr0 > 0,

−qr, otherwise

Unless we need to perform a full rotation about any axis (which, unless we
want to perform acrobatic manoeuvres, is the case only for the z axis).
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Details

To compute the (hovering) equilibrium point (qe, ωe, ne, ue) we need to
take into account the following

I The quadrotor should stay upright, that is qe = (1, 0, 0, 0)

I It should not rotate or wobble, so ωe = 0

I It should lift its own weight, so the total thrust should be equal to its
weight, that is

NmCTρn
2
hD

4 = mg

I We then use nh to compute k3 at equilibrium,

I We linearise about (nx, ny, nz) = (0, 0, 0).
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RC signals

Note. The references from the RC are
sent out as Euler angles. First, we need to
compute the corresponding quaternion qr.
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IX. Implementation of Attitude
Control System



The EAGLE MATLAB simulator

  

 

Attitude dynamics IMU

Quadcopter

LQR KF

Attitude Controller

This is the schematic overview of what we need to build.
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The EAGLE MATLAB simulator

Main functions:

I quat params: model parameters (adjust them!)

I quat dynamics: continuous-time attitude dynamics

I quat linear dyn: linearised continuous-time dynamics

I eagle simulator: attitude controller/observer designer (lots of
options; read the documentation).

Helper functions:

I deg2quat: degrees to quaternion

I print mv: generates C code for mat-vec operations. This function
may assist in generating C code.

There is detailed documentation. Do study it.
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Useful MATLAB functions (i)

I For C code generation we need:

X fopen, fclose: open and close files
X fprintf: write to file

I Make nice figures using:

X plot, plot3: make figure; use the option linewidth to make lines
adequately visible

X hold on: make plots with multiple data
X xlabel, ylabel: always add axis labels
X grid on: show grid

I Control

X dlqr, kalman: LQR and Kalman design
X eig: eigenvalues of a matrix
X svd: singular value decomposition
X cov: estimate covariance matrix
X mvnrnd: random vectors from N (µ,Σ)
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Useful MATLAB functions (ii)

I Quaternions:

X quatnorm: returns ‖p‖
X quatnormalize(p): returns p/‖p‖
X deg2quat: angle (in degrees) to unit quaternion
X quatmultiply(p,q): performs p⊗ q
X quatdivide: multiply by inverse quaternion
X quatconj: conjugate quaternion
X quatinv: inverse quaternion
X quatrotate: rotates a vector by (the conjugate of) a quaternion
X atan2: four quadrant arctangent
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Step 1

I Peruse the course material

I Write down the system dynamics in state space form

I Determine the equilibrium points of the (CT) system

I Linearise the system & simulate

I Discretise & simulate again — compare
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Step 2

I Decide the system structure (inputs, states, outputs)

I Is the system controllable? Are you sure?

I In MATLAB use ctrb and rank.

The SVD decomposition is also useful for finding the rank of a matrix and determining whether (A,B) is near-

uncontrollable. In MATLAB use svd or rank(·,tol).
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Step 3

I Design a controller that steers the system state to a fixed equilibrium
point (as in Section IV; no reference tracking)

I Choose some initial values for Q and R and find an LQR gain K

I Compute the eigenvalues of A+BK. Is it stable?

I Fine tune Q and R until you get satisfactory closed-loop behaviour
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Step 4

I Implement an LQR controller with integral action

I Tweak the LQR weights Q and R — choose Q = blkdiag(Qx, Qz)

I Apply a constant disturbance — is it attenuated adequately?

I Find the poles of the overall system (with state (xk, zk))
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Step 5

I Design a controller using LQR for reference tracking

I Design a steady-state Kalman filter

I Plot the poles of the observer and the controller

I Simulate the system and assess the closed-loop performance

I Assume we have inexact estimates of the model parameters and
measurement noise

Make reasonable assumptions regarding the level of noise and the error in the determination of the system parameters.

Use experimental data. For example, how accurate are the IMU measurements? How accurate is the model?
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Step 6

I Implement a C code generator that will procude an ANSI C

implementation of your controller/observer

I Test the C code (on a computer)

I Do not hard-code the controller observer yourselves! You will
certainly need to modify/re-tune your controller/observer and test it
on the quadcopter several times. Make a good code generator.

I Test your implementation on the quadcopter:

X Print the signals to the motors (with the motors disconnected)
X Test without the propellers attached to the motors
X Test on the gimbal vise
X First test flight
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Step 7

How to get rid of the drift...

I Calibrate the IMU (every time before taking off)
I Balance the quadcopter

X Make sure the arms are straight and perpendicular to one another
X Balance the centre of mass
X Straighten up all motors and level the propellers

I Re-calibrate the ESCs

I Reduce vibrations

I As a last resort, use the trimmers on the RC to correct

141 / 174



Regarding the C code

I Pure ANSI C,

I /* comments are like that */

I You cannot mix declarations with initialisations, e.g., you cannot
write float a = 0.0;. Use initialisers instead.

I Use structures (struct).

I Avoid allocating memory dynamically, e.g., using malloc.

I Document your functions with /** ... */!

I Perform unit tests.

I Use git or some other code versioning system.
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X. Navigation



Navigation

Goal: Design a controller which will make the quadcopter fly
autonomously, hover at specified positions, maintain a given heading,
follow prescribed paths or traverse given points in space.

The variables we want to control are (x, y, z, ψ).

Approach: We first derive the navigation dynamics based on first
principles and then we use data to identify a dynamical model which we
use to auto-pilot the quadcopter.
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Navigation — the closed-loop system

  

 

 

Attitude dynamics IMU

Quadcopter

LQR KF

Camera

Video
Processor

LQR KF

Attitude Controller

Navigator

Sonar

Attitude 
information

Geometric
Transformations

Filter

The navigation system need to collaborate with the image processing module and the attitude control module.
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High-tilt corrections of measurements

I At low-tilt mode, we may assume that the camera and the sonar face
(approximately) downwards and that the (x, y, z) measurements are
reliable

I The tilt of the quadcopter may significantly alter these measurements

I We shall first see how the tilt affects the measured altitude

I And then we will use a quaternion-based correction technique.

Have a look at slide 144: the block “Geometric transformations” uses the current quaternion q to correct the

(x, y, z) measurements.
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High-tilt correction of sonar measurements
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B A
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Tilted about y-axis by θ = B̂OA.
4BAO is a right-angled triangle.
We measure z̄ = |OB|, but need

z = |OA| = z̄

cos θ
.

This example is only to gain some intuition. In practice, use the methodology on slides 148 to 151.
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High-tilt correction of sonar measurements
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Tilted about x and y-axes by
θ = B̂OA and φ = ĈOB.
4CAO is a right-angled triangle
We measure z̄ = |OC|, but need

z = |OA| = z̄

cos θ cosφ
.

This example is only to gain some intuition. In practice, use the methodology on slides 148 to 151.
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Quaternion-based correction

1
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-1

cos σ = u
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Define a unit vector v = (0, 0,−1) facing
downwards and rotate it using q to
obtain a vector u, that is[

0
u

]
= q ⊗

[
0
v

]
⊗ q−1.

Note that ‖u‖ = 1. The angle between
u and v is cosσ = u′v.

Exercise: show that ux = −2(q0q2 + q1q3), uy = 2(q0q1 − q2q3) and qz = −q20 + q21 + q22 − q23 .

148 / 174



Quaternion-based correction
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Let z̄ = |OB| be the sonar measurement.
Then, the altitude z = |OA| is

z = cosσ · z̄ = u′v · z̄.

If the quadcopter is upright, u = v and
u′v = ‖u‖2 = 1, so z = z̄.
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Quaternion-based correction
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By virtue of the Pythagorean Theorem
on 4BAO (Â is a right angle), the
length |AB| is

|AB| =
√
z̄2 − z2

Both A and B lie on a line E whose
direction is defined by the first two
components of u = (ux, uy, uz).
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Quaternion-based correction
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On the (x, y)-plane, define the vector
û = (ux, uy). Then, the x and y errors,
namely e = (ex, ey), are given by

e = |AB| · û

‖û‖
.
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Example (i)

A = [-.5 0 0; .5 0 0]; % arm #1
B = [0 .5 0; 0 -.5 0]; % arm #2
v = [0; 0; -1]; % vector facing down
z_ = 1.101718; % measured altitude
theta = 15; phi = 20; psi = 30; % rotation
q = quatconj(deg2quat(psi , theta , phi));

u = quatrotate(q, v')';
A_ = quatrotate(q, A); % rotated arm #1
B_ = quatrotate(q, B); % rotated arm #2
cos_sigma = u'*v;
z = z_*cos_sigma; % actual altitude
AB = sqrt(z_^2 - z^2); % length |AB|
e = AB*u(1:2)/ norm(u(1:2)); % (x,y)−corrections

Check out the documentation of quatrotate (it applies q∗).
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Example (ii)

figure; hold on;

% Quadcopter, original upright position:
plot3(A(:,1), A(:,2), A(:,3),'--','Color ','k');
plot3(B(:,1), B(:,2), B(:,3),'--','Color ','k');
plot3 ([0 v(1)] ,[0 v(2)] ,[0 v(3)]);

plot3 ([0 u(1)] ,[0 u(2)] ,[0 u(3)]);

% Quadcopter, rotated by p:
plot3(A_(:,1), A_(:,2), A_(:,3),'r','linewidth ' ,2);
plot3(B_(:,1), B_(:,2), B_(:,3),'r','linewidth ' ,2);
% Position correction:
plot3(e(1), e(2), -1, 'x');
% Figure configuration (camera, grid, labels):
campos ([ -5.3 -6.5 2.8]); axis([-1 1 -1 1 -1 1]);

grid on; xlabel('x'); ylabel('y'); zlabel('z');
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Example (iii)
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(Dashed black lines): original position, (Red lines): rotated quadcopter, (Orange vertical line): vector v, (Purple

tilted line): Vector u, (Point marked with green ×): correction e.
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Median filter

Problem: Raw measurements, such as sonar measurements, may give
measurements which are outright outliers (e.g., altitude measurements of
0 or 5m while hovering around 1m). Any kind of moving average,
complementary or Kalman-type filters will be affected by these outliers.

Solution: Store the past m measurements (m should preferably be an odd
number), that is {yk−m+1, . . . , yk} and take the median value; this is the
filtered value ŷk.

To compute the median of m numbers {a1, . . . , am} with m ≥ 3 an odd integer sort them into a sequence

{a(1), . . . , a(m)} and take a(dm/2e).
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Median filter
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Median filter
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Median filter
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Median filter
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Median filter — Implementation

In MATLAB, use medfilt1(data, m). In C one may use the standard
library function qsort to sort an array of numbers in ascending order.
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Measurement fusion for localisation

Measurements:

I Sonar (z)

I Camera (x, y)

I Accelerometer (ax, ay, az)

I Total acceleration estimated from n̂i

Models:

I Kinematics: ẍ = a− (0, 0, g)>

I Total acceleration: a = F/m, where F = F(q, ni)

Methods:

I Kalman filter with bias rejection

I LQR with integral action
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Modelling

The total force which is applied by the 4 propellers is

F = CTρD
4
∑

i=1,...,4

n2i ,

and the (norm of the) total acceleration which is due to the propellers is
F/m, where ni is the frequency of rotation of propeller i.
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Modelling

To find the direction of the total acceleration we need to use the
quaternion which described the orientation of the quadcopter, that is

[
0

aprop

]
= q ⊗


0
0
0
F
m

⊗ q−1.
In other words, we rotate the vertical upward vector (0, 0, Fm) by the
quaternion q. Then the total acceleration isaxay

az

 = aprop +

 0
0
−g

 ,
where we simply subtracted the gravitational acceleration from az.
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Modelling
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Modelling

Then, the (x, y, z)-dynamics of the quadcopter’s motion is

ẍ = ax,

ÿ = ay,

z̈ = az.

Where (ax, ay, az) is computed as on slide 163. The above equations lead
to the dynamical system

v̇ = a,

ṙ = v,

where v = (vv, vy, vz) is the vector of linear velocities and r = (x, y, z) is
the position of the quadcopter in space.
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Auto-pilot

Think of auto-piloting as a replacement of the remote control. The
controlled system has manipulated variables

I the pitch command up
I the roll command ur
I the throttle command ut and

I the yaw command which, however, will be disregarded here.

The system has the following measurable outputs

I the position (x, y) of the quadcopter (from the vision module)

I the altitude z (from the sonar)

I the acceleration a(1) from the attitude module

I the acceleration a(2) from the accelerometer of the IMU
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Auto-pilot

  

Quadcopter
Flight Dynamics

Observer
with measurement 

bias rejection

Controller(s)
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Example: Kinematics in continuous time

Define xnav = (r, v) ∈ IR6. The observer on slide 167 is based on the very
simple dynamical system (in continuous time)

d
dtxnav =

[
03×3 I3
03×3 03×3

]
︸ ︷︷ ︸

Anav

xnav +

[
03×3
I3

]
︸ ︷︷ ︸
Bnav

a,

and ynav = (r,a(1),a(2)) ∈ IR12, that is

ynav =

[
I3 03×3

06×3 06×3

]
︸ ︷︷ ︸

Cnav

xnav +

03×3
I3
I3


︸ ︷︷ ︸
Dnav

a

We have omitted the disturbance terms.
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Example: Kinematics in discrete time

The kinematics in discrete time is described by a system

xnav,k+1 = Ad
nav · xnav,k +Bd

nav · ak
ynav,k = Cd

nav · xnav,k +Dd
nav · ak

with matrices

Ad
nav =



1 h
1 h

1 h
1

1
1

 , B
d
nav =

[
h2/2 · I3
hI3

]
,

Cd
nav = Cnav, D

d
nav = Dnav

169 / 174



Example: Modelling noise (i)

We assume that external disturbances act on the system

xnav,k+1 = Ad
nav · xnav,k +Bd

nav · ak + wk

ynav,k = Cd
nav · xnav,k +Dd

nav · ak + vk +Gddk,

where

I wk ∈ IR6 is a zero-mean process noise

I vk ∈ IR9 is a zero-mean measurement noise

I dk ∈ IR? is a persistent disturbance (dk+1 = dk)

I Gd ∈ IR9×? is a matrix that maps the effect on dk on ynav,k
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Example: Modelling noise (ii)

Kinematic model:

xnav,k+1 = Ad
nav · xnav,k +Bd

nav · ak + wk

ynav,k = Cd
nav · xnav,k +Dd

nav · ak + vk +Gddk,

Tasks:

I Perform experiments

I Use the logs to determine the covariance matrices of wk and vk
I Choose a dimension for dk and a matrix Gd

X Is there a bias in r and/or a(1) and/or a(2)?
X Is the resulting augmented model observable?

I Implement KF with bias rejection
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Example: Controller design

A very simple navigation controller is one of the form

up = u0p +Kp(x̂− xref),

ur = u0r +Kr(ŷ − yref),

ut = u0t +Kt(ẑ − zref).

This can be modified by adding integrators, use the velocity estimates and
a lot more.

This part of the desing is left to you.

The equilibrium values u0
p, u0

r and u0
t need to be determined experimentally.
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Flight modes

I Manual mode: The quadcopter receives yaw, pitch, roll and thrust
commands from the RC (done)

I Altitude hold mode: The quadcopter hovers at a constant altitude
while we may use the rudder on the RC to make it move around

I Loiter mode: The quadcopter stays at a fixed position (x, y, z) and
with fixed yaw ψ

I Reference tracking mode: The quadcopter follows a prescribed
trajectory of (x, y, z, ψ)
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